
OpenLayers Documentation
OpenLayers is a pure JavaScript library for displaying map data in most modern web browsers,
with no server-side dependencies. OpenLayers implements a JavaScript API for building rich web-
based geographic applications, similar to the Google Maps and MSN Virtual Earth APIs, with one
important difference – OpenLayers is Free Software, developed for and by the Open Source
software community.

Table of Contents
OpenLayers Documentation...............................1

OpenLayers Examples....................................1
Code Documentation......................................1

Getting Started..2
Creating Your First Map................................2
Adding an Overlay WMS...............................3
Adding a Vector Marker to the Map..............4

Understanding OpenLayers Syntax....................4
OpenLayers “Classes”....................................4
The options Argument....................................5

Layers..5
Base Layers and Non-Base Layers.................5
Raster Layers..6
Overlay Layers...7
Generic Subclasses...9

Controls...9
Default Controls...9
Panels...10
Map Controls..11
Button Classes..15
Generic Base Classes...................................15
Deprecated Controls.....................................16
More documentation....................................16

Formats...16
Built In Formats...16

Creating Custom Formats.............................16
Overlays..17

Overlay Basics..17
Vector Overlays..17
Marker Overlays...19
Transitioning from Text Layer or GeoRSS
Layer to Vectors...19

Styling...21
Style Classes...22
Using Style Objects......................................23
Rule Based Styling.......................................23
Style Properties..25

Deploying..27
Single File Build...27
Custom Build Profiles..................................28
Deploying Files..29

Requesting Remote Data...................................29
Example usage..30

Spherical Mercator..32
What is Spherical Mercator?........................33
First Map..33
Working with Projected Coordinates...........34
Reprojecting Vector Data.............................35
Serializing Projected Data............................36
Creating Spherical Mercator Raster Images.36

OpenLayers Examples
One of the guiding principles of OpenLayers development has been to maintain a set of small
examples of most functionality, allowing the library to demonstrate most of what it can do by
example. This means that our examples are typically our most up to date source of documentation,
and provide more than 100 different code snippets for use in your applications.

These examples are available from http://openlayers.org/dev/examples/

Code Documentation
Documentation for the OpenLayers API (http://dev.openlayers.org/apidocs/)

Developer Documentation for the OpenLayers API (http://dev.openlayers.org/docs/)

OpenLayers Documentation (fév. 2010) 1/38

http://trac.openlayers.org/wiki/Documentation
http://dev.openlayers.org/docs/
http://dev.openlayers.org/apidocs/
http://openlayers.org/dev/examples/

Getting Started

Creating Your First Map
The OpenLayers API has two concepts which are important to understand in order to build your
first map: ‘Map’, and ‘Layer’. An OpenLayers Map stores information about the default projection,
extents, units, and so on of the map. Inside the map, data is displayed via ‘Layer’s. A Layer is a data
source – information about how OpenLayers should request data and display it.

Crafting HTML

Building an OpenLayers viewer requires crafting HTML in which your viewer will be seen.
OpenLayers supports putting a map inside of any block level element – this means that it can be
used to put a map in almost any HTML element on your page.

In addition to a single block level element, it is also required to include a script tag which includes
the OpenLayers library to the page.

<html>
<head>
 <title>OpenLayers Example</title>
 <script src="http://openlayers.org/api/OpenLayers.js"></script>
 </head>
 <body>
 <div style="width:100%; height:100%" id="map"></div>
 </body>
</html>

Ex. 1: Creating your first HTML Page

Creating the Map Viewer

In order to create the viewer, you must first create a map. The OpenLayers.Map constructor requires
one argument: This argument must either be an HTML Element, or the ID of an HTML element.
This is the element in which the map will be placed.

var map = new OpenLayers.Map('map');

Ex. 2: Map Constructor

The next step to creating a viewer is to add a layer to the Map. OpenLayers supports many different
data sources, from WMS to Yahoo! Maps to WorldWind. In this example, the WMS layer is used.
The WMS layer is an example provided by MetaCarta.

var wms = new OpenLayers.Layer.WMS(
 "OpenLayers WMS",
 "http://labs.metacarta.com/wms/vmap0",
 {'layers':'basic'});
map.addLayer(wms);

Ex. 3: Layer Constructor

The first parameter in this constructor is the URL of the WMS server. The second argument is an
object containing the parameterss to be appended to the WMS request.

OpenLayers Documentation (fév. 2010) 2/38

Finally, in order to display the map, you must set a center and zoom level. In order to zoom to fit
the map into the window, you can use the zoomToMaxExtent function, which will zoom as close as
possible while still fitting the full extents within the window.

Putting it All Together

The following code block puts all the pieces together to create an OpenLayers viewer.

<html>
<head>
 <title>OpenLayers Example</title>
 <script src="http://openlayers.org/api/OpenLayers.js"></script>
 </head>
 <body>
 <div style="width:100%; height:100%" id="map"></div>
 <script defer="defer" type="text/javascript">
 var map = new OpenLayers.Map('map');
 var wms = new OpenLayers.Layer.WMS("OpenLayers WMS",
 "http://labs.metacarta.com/wms/vmap0", {layers: 'basic'});
 map.addLayer(wms);
 map.zoomToMaxExtent();
 </script>

</body>
</html>

Ex. 4: Full HTML and Javascript for simple WMS browser

Adding an Overlay WMS
WMS layers have the capability to be overlaid on top of other WMS layers in the same projection.
There are several ways to mark a layer as an overlay, rather than a base layer. With WMS, the best
way to do this is by setting the ‘transparent’ parameter to ‘true’. The example here uses a political
borders WMS to demonstrate overlaying a transparent WMS.

var twms = new OpenLayers.Layer.WMS("World Map",
 "http://world.freemap.in/cgi-bin/mapserv?",
 { map: '/www/freemap.in/world/map/factbooktrans.map',
 transparent: 'true', layers: 'factbook'}
);
map.addLayer(twms);

Ex. 5: How to add a transparent WMS overlay to your map.

Using the transparent: ‘true’ parameter sets two flags automatically:

• format parameter. The format option of the WMS layer is set to image/png if the
browser supports transparent PNG images. (This is all browsers except for
Internet Explorer 6.) In Internet Explorer 6, this will instead be set to image/gif.

• isBaseLayer option. The isBaseLayer option controls whether the layer can be
displayed at the same time as other layers. This option defaults to false for the
WMS layer, but setting transparent to true changes it to true by default.

Putting this code together with our earlier example, we get the following:

<html>
<head>

OpenLayers Documentation (fév. 2010) 3/38

 <title>OpenLayers Example</title>
 <script src="http://openlayers.org/api/OpenLayers.js"></script>
 </head>
 <body>
 <div style="width:100%; height:100%" id="map"></div>
 <script defer="defer" type="text/javascript">
 var map = new OpenLayers.Map('map');
 var wms = new OpenLayers.Layer.WMS("OpenLayers WMS",
 "http://labs.metacarta.com/wms/vmap0", {layers: 'basic'});
 var twms = new OpenLayers.Layer.WMS("World Map",
 "http://world.freemap.in/cgi-bin/mapserv?",
 { map: '/www/freemap.in/world/map/factbooktrans.map',
 transparent: 'true', layers: 'factbook'}
);
 map.addLayers([wms, twms]);
 map.zoomToMaxExtent();
 </script>

</body>
</html>

Ex. 6: How to add a transparent WMS overlay to your map.

One thing to note here is that we have used addLayers on the map object to add both layers at the
same time. This allows us to save a line of code in this case, and may be useful in other cases when
you need to add multiple layers to the map at the same time.

Adding a Vector Marker to the Map
To add a single marker at a latitude and longitude to the map, you can use a Vector Layer to add an
overlay.

var vectorLayer = new OpenLayers.Layer.Vector("Overlay");
var feature = new OpenLayers.Feature.Vector(
 new OpenLayers.Geometry.Point(-71, 42),
 {some:'data'},
 {externalGraphic: 'img/marker.png', graphicHeight: 21, graphicWidth: 16});
vectorLayer.addFeatures(feature);
map.addLayer(vectorLayer);

This is a simple demonstration – more information is available on overlays, how to interact with
them, and how to control and style them via the Styling and Overlays documentation.

Understanding OpenLayers Syntax
This section is intended to get users comfortable with the syntax used when developing an
application with OpenLayers.

OpenLayers “Classes”
OpenLayers is written in a “classical” style. This means that the library provides functions intended
to be used with the new keyword that return objects. These functions all begin with a capital letter.

var map = new OpenLayers.Map("map", options);

OpenLayers Documentation (fév. 2010) 4/38

http://docs.openlayers.org/library/overlays.html#overlays
http://docs.openlayers.org/library/feature_styling.html#styling

The code above creates a new map object with all the properties of the OpenLayers.Map
function’s prototype. The properties that are intended to be set or accessed are documented in the
API Documentation

In general, all parameters to a constructor are required, except for the options parameter. When this
is not the case, the API documentation for the constructor will usually say so.

The options Argument
Most OpenLayers object constructors take an options object as one of their arguments. In
general, you can set the value of any API property in a contructor’s options argument.

For example, looking at the API Docs for the Vector layer, you can see the isBaseLayer
property. If you specify a value for isBaseLayer in the options argument, this will be set on the
layer.

For example:

var layer = new OpenLayers.Layer.Vector("Layer Name", {
 isBaseLayer: true
});

layer.isBaseLayer === true; // this is true

You can also see that the Vector layer inherits from OpenLayers.Layer. Following the link to
the Layer API documentation, you’ll find a reference to the layer’s projection property. As
with isBaseLayer, if you provide a projection property in the options argument, this
value will be set on the layer.

var layer = new OpenLayers.Layer.Vector("Layer Name", {
 projection: new OpenLayers.Projection("EPSG:900913")
});

Layers
Layers are the ‘datasources’ in OpenLayers.

Base Layers and Non-Base Layers
OpenLayers has two types of layers when operating in your application: base layers and overlays.
This difference controls several aspects of how you interact with an OpenLayers Map.

Base Layers

Base Layers are mutually exclusive layers, meaning only one can be enabled at any given time. The
currently active base layer determines the available projection (coordinate system) and zoom levels
available on the map.

Whether a layer is a base layer or not is determined by the isBaseLayer property on the layer. Most
raster layers have the isBaseLayer property set to true by default. It can be changed in the layer
options.

Base Layers always display below overlay layers.

OpenLayers Documentation (fév. 2010) 5/38

http://dev.openlayers.org/apidocs/files/OpenLayers/Layer-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/Vector-js.html
http://dev.openlayers.org/apidocs

Non Base Layers

Non base layers – sometimes called overlays – are the alternative to Base Layers. Multiple non-base
layer can be enabled at a time. These layers do not control the zoom levels of the map, but can be
enabled or disabled at certain scales by min/max scale/resolution parameters so that they are only
enabled at a certain level.

Some types of overlays support reprojection to the base layer projection at layer load time. Most
overlay layers default to non-base overlays, as does the base Layer class. Non-base Layers always
display above base layers.

Raster Layers
Raster Layers are imagery layers. These layers are typically in a fixed projection which can not be
changed on the client side.

Google

Layer for using Google Maps data within OpenLayers. For API information, see the Google Layer
API Docs. For an example of usage, see the Spherical Mercator example.

If you are overlaying other data on a Google Maps base layer, you will want to be interacting with
the Google Maps layer in projected coordinates. (This is important if you are working with imagery
data especially.) You can read more about the ‘Spherical Mercator’ projection that Google Maps –
and other commercial layers – use in the Spherical Mercator documentation.

The Google Layer class is designed to be used only as a base layer.

Image

For API information, see the Image Layer API Docs.

KaMap

For API information, see the KaMap Layer API Docs.

KaMapCache

For API information, see the KaMapCache Layer API Docs.

MapGuide

For API information, see the MapGuide Layer API Docs.

MapServer

This layer is not required to interact with MapServer. In general, the WMS Layer is preferred over
the MapServer Layer. Since MapServer exposes most of its CGI functionality in WMS mode as
well, the WMS layer is preferred. The MapServer layer can often lead to maps which seem to work,
but don’t due to projection issues or other similar misconfigurations. Unless you have a strong
reason not to, you should use the Layer.WMS instead of a Layer.MapServer.

If you are using a Layer.MapServer, and your map is being repeated several times, this indicates

OpenLayers Documentation (fév. 2010) 6/38

http://docs.openlayers.org/library/layers.html#layer-wms
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/MapGuide-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/KaMapCache-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/KaMap-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/Image-js.html
http://docs.openlayers.org/library/spherical_mercator.html#spherical-mercator
http://openlayers.org/dev/examples/spherical-mercator.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/Google-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/Google-js.html

that you have not properly configured your map to be in a different projection. OpenLayers can not
read this information from your mapfile, and it must be configured explicitly. The FAQ on setting
different projection properties provides information on how to configure different projections in
OpenLayers.

For API information, see the MapServer Layer API Docs.

MultiMap

For API information, see the MultiMap Layer API Docs.

TMS

For API information, see the TMS Layer API Docs.

TileCache

For API information, see the TileCache Layer API Docs.

VirtualEarth

For API information, see the VirtualEarth Layer API Docs.

WMS

Layer type for accessing data served according to the Web Mapping Service standard.

For API information, see the WMS Layer API Docs.

WorldWind

For API information, see the WorldWind Layer API Docs.

Yahoo

For API information, see the Yahoo Layer API Docs.

Overlay Layers
Overlay layers are any layers that have their source data in a format other than imagery. This
includes subclasses of both Markers Layers and Vector Layers. For more information on the
differences between these two base classes, see the Overlays documentation.

Boxes

Based on subclassing markers. In general, it is probably better to implement this functionality with
a Vectors layer and polygon geometries. Maintained for backwards compatibility.

For API information, see the Boxes Layer API Docs.

GML

The GML layer is a vector layer subclass designed to read data from a file once and display it. It is

OpenLayers Documentation (fév. 2010) 7/38

http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/Boxes-js.html
http://docs.openlayers.org/library/overlays.html#overlays
http://docs.openlayers.org/library/layers.html#layer-vector
http://docs.openlayers.org/library/layers.html#layer-markers
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/Yahoo-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/WorldWind-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/WMS-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/VirtualEarth-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/TileCache-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/TMS-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/MultiMap-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/MapServer-js.html
http://faq.openlayers.org/map/how-do-i-set-a-different-projection-on-my-map/
http://faq.openlayers.org/map/how-do-i-set-a-different-projection-on-my-map/

ideal for working with many formats, not just GML, and can be configured to read other formats via
the ‘format’ option on the layer.

The simplest use case of the GML layer is simply to load a GML file. The GML Layer Example
shows this: simply add:

var layer = new OpenLayers.Layer.GML("GML", "gml/polygon.xml")
map.addLayer(layer);

If you want to add a different type of format, you can change the format option of the layer at
initialization. The KML example demonstrates this:

var layer = new OpenLayers.Layer.GML("KML", "kml/lines.kml", {
 format: OpenLayers.Format.KML
})
map.addLayer(layer);

You can also add formatOption to the layer: these options are used when creating the format class
internally to the layer.

var layer = new OpenLayers.Layer.GML("KML", "kml/lines.kml", {
 format: OpenLayers.Format.KML,
 formatOptions: {
 'extractStyles': true
 }
});
map.addLayer(layer);

The format options are determined by the format class.

For API information, see the GML Layer API Docs.

GeoRSS

The GeoRSS layer uses the GeoRSS format, and displays the results as clickable markers. It is a
subclass of the Markers layer, and does not support lines or polygons. It has many hardcoded
behaviors, and in general, you may be better off using a GML layer with a SelectFeature Control
instead of the GeoRSS layer if you want configurability of your application behavior. (For more
information on how to make that transition, see Transitioning from Text Layer or GeoRSS Layer to
Vectors.)

For API information, see the GeoRSS Layer API Docs.

Markers

The Markers base layer is simple, and allows use of the addMarkers function to add markers to the
layer. It supports only points, not lines or polygons.

For API information, see the Markers Layer API Docs.

PointTrack

For API information, see the PointTrack Layer API Docs.

Text

The Text layer uses the Text format, and displays the results as clickable markers. It is a subclass of

OpenLayers Documentation (fév. 2010) 8/38

http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/PointTrack-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/Markers-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/GeoRSS-js.html
http://docs.openlayers.org/library/overlays.html#transition-markers-to-vectors
http://docs.openlayers.org/library/overlays.html#transition-markers-to-vectors
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/GML-js.html
http://openlayers.org/dev/examples/kml-layer.html
http://openlayers.org/dev/examples/gml-layer.html

the Markers layer, and does not support lines or polygons. It has many hardcoded behaviors, and in
general, you may be better off using a GML layer with a SelectFeature Control instead of the Text
layer if you want configurability of your application behavior. (For more information on how to
make that transition, see Transitioning from Text Layer or GeoRSS Layer to Vectors.)

For API information, see the Text Layer API Docs.

Vector

The Vector Layer is the basis of the advanced geometry support in OpenLayers. Classes like GML
and WFS subclass from the Vector layer. When creating features in JavaScript code, using the
Vector layer directly is likely a good way to go.

As of OpenLayers 2.7, development has begun on extending the Vector Layer to have additional
capabilities for loading data, to replace the large number of layer subclasses. This work on Strategy
and Protocol classes is designed to make it easier to interact with data from remote datasources. For
more information on Protocols and Strategies, see the OpenLayers API documentation.

For API information, see the Vector Layer API Docs.

WFS

For API information, see the WFS Layer API Docs.

Generic Subclasses
• EventPane
• FixedZoomLevels
• Grid
• HTTPRequest
• SphericalMercator

Controls
Controls are OpenLayers classes which affect the state of the map, or display additional information
to the user. Controls are the primary interface for map interactions.

Default Controls
The following controls are default controls on the map:

• ArgParser
• Attribution
• Navigation
• PanZoom

Panels
Control panels allow collections of multiple controls together, as is common in many applications.

OpenLayers Documentation (fév. 2010) 9/38

http://docs.openlayers.org/library/controls.html#control-argparser
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/WFS-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/Vector-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/Text-js.html
http://docs.openlayers.org/library/overlays.html#transition-markers-to-vectors

Styling Panels

Panels are styled by CSS. The “ItemActive” and “ItemInactive” are added to the control’s
displayClass.

All controls have an overridable ‘displayClass’ property which maps to their base CSS class name.
This name is calculated by changing the class name by removing all ‘.’ characters, and changing
“OpenLayers” to “ol”. So, OpenLayers.Control.ZoomBox changes to olControlZoomBox.

Panel items are styled by combining the style of the Panel with the style of a control inside of it.
Using the NavToolbar Panel as an example:

.olControlNavToolbar div {
 display:block;
 width: 28px;
 height: 28px;
 top: 300px;
 left: 6px;
 position: relative;
}
.olControlNavToolbar .olControlNavigationItemActive {
 background-image: url("img/panning-hand-on.png");
 background-repeat: no-repeat;
}
.olControlNavToolbar .olControlNavigationItemInactive {
 background-image: url("img/panning-hand-off.png");
 background-repeat: no-repeat;
}

Here, we say:

• Div elements displayed inside the toolbar are 28px wide and 28px high. The top of the div
should be at 300px, the left side should be at 6px.

• Then, for the control, we provide two background images: one for active and one for
inactive.

For toolbars to go left to right, you can also control them with CSS:

.olControlEditingToolbar div {
 float:right;
 right: 0px;
 height: 30px;
 width: 200px;
}

Simply set the ‘float: right’ parameter, and give the parent element some

In order to improve the user experience, existing panels like the EditingToolbar use a single
background image, and control the icon to display via ‘top’ and ‘left’ parameters, offsetting and
clipping the background image. This is not required, but doing this makes it so that when you select
a tool, you don’t have to wait for the ‘inactive’ image to display before continuing.

Controls to be used with Panels

Panels can have controls of many ‘types’ inside of them. Each tool in a panel should have a ‘type’
attribute which is one of:

• OpenLayers.Control.TYPE_TOOL (the default)

OpenLayers Documentation (fév. 2010) 10/38

http://docs.openlayers.org/library/controls.html#control-editingtoolbar

• OpenLayers.Control.TYPE_BUTTON
• OpenLayers.Control.TYPE_TOGGLE

Customizing an Existing Panel

Several existing panels – like the EditingToolbar or PanPanel – have multiple controls combined,
but it is not always desirable to use all those controls. However, it is relatively simple to createa
control which mimics the behavior of these controls. For example, if you wish to create an editing
toolbar control that only has the ability to draw lines, you could do so with the following code:

var layer = new OpenLayers.Layer.Vector();
var panelControls = [
 new OpenLayers.Control.Navigation(),
 new OpenLayers.Control.DrawFeature(layer,
 OpenLayers.Handler.Path,
 {'displayClass': 'olControlDrawFeaturePath'})
];
var toolbar = new OpenLayers.Control.Panel({
 displayClass: 'olControlEditingToolbar',
 defaultControl: panelControls[0]
});
toolbar.addControls(panelControls);
map.addControl(toolbar);

There are two things to note here:

• We are reusing the style of the EditingToolbar by taking its ‘displayClass’ property. This
means we will pick up the default icons and so on of the CSS for that toolbar. (For more
details, see Styling Panels.)

• We set the default control to be the Navigation control, but we could just as easily change
that.

In this way, you can use any control which works in a panel – including, for example, the
SelectFeature control, the ZoomToMaxExtent control, and more, simply by changing the controls
which are in the list.

Map Controls

ArgParser

Takes URL arguments, and updates the map.

In order for the ArgParser control to work, you must check that ‘getCenter()’ returns null before
centering your map for the first time. Most applications use a setCenter or zoomToMaxExtent call:
this call should be avoided if the center is already set.

var map = new OpenLayers.Map('map');
var layer = new OpenLayers.Layer();
map.addLayer(layer);

// Ensure that center is not set
if (!map.getCenter()) {
 map.setCenter(new OpenLayers.LonLat(-71, 42), 4);
}

OpenLayers Documentation (fév. 2010) 11/38

http://docs.openlayers.org/library/controls.html#styling-panels
http://docs.openlayers.org/library/controls.html#control-panpanel
http://docs.openlayers.org/library/controls.html#control-editingtoolbar

The ArgParser control is enabled by default.

Attribution

The attribution control will display attribution properties set on any layers in the map in the lower
right corner of the map, by default. The style and location of this control can be overridden by
overriding the ‘olControlAttribution’ CSS class.

Use of the attribution control is demonstrated in the Attribution example. For API information, see
the Attribution API Docs.

DragFeature

DragPan

The DragPan control implements map dragging interactions.

DrawFeature

EditingToolbar

Display a Navigation control, along with three editing tools: Point, Path, and Polygon. If this does
not fit your needs, see Customizing an Existing Panel above.

KeyboardDefaults

LayerSwitcher

Measure

A planar distance measuring tool.

ModifyFeature

The ModifyFeature control can be used to edit an existing vector object.

This control causes three different types of events to fire on the layer: * beforefeaturemodified -
triggered when a user selects the feature to begin editing. * featuremodified - triggered when a user
changes something about the feature. * afterfeaturemodified - triggered after the user unselects the
feature.

To register for one of these events, register on the layer:

var layer = new OpenLayers.Layer.Vector("");
layer.events.on({
 'beforefeaturemodified': function(evt) {
 console.log("Selected " + evt.feature.id + " for modification");
 },
 'afterfeaturemodified': function(evt) {
 console.log("Finished with " + evt.feature.id);
 }
});

OpenLayers Documentation (fév. 2010) 12/38

http://docs.openlayers.org/library/controls.html#customizing-panels
http://docs.openlayers.org/library/controls.html#control-navigation
http://dev.openlayers.org/apidocs/files/OpenLayers/Control/Attribution-js.html
http://openlayers.org/dev/examples/attribution.html

There are several different modes that the ModifyFeature control can work in. These can be
combined to work together.

• RESHAPE – The default. Allos changing the vertices of a feature by dragging existing
vertices, creating new vertices by dragging ‘virtual vertices’, or deleting vertices by
hovering over a vertice and pressing the delete key.

• RESIZE – Allows changing the size of a geometry.
• ROTATE – change the orientation of the geometry
• DRAG – change the position of the geometry.

When creating the control, you can use a bitwise OR to combine these:

var modifyFeature = new OpenLayers.Control.ModifyFeature(layer, {
 mode: OpenLayers.Control.ModifyFeature.RESIZE |
OpenLayers.Control.ModifyFeature.DRAG
});

For an example of using the ModifyFeature control, see the ModifyFeature example. For API
information, see the ModifyFeature API Documentation.

The ModifyFeature control can only be used with a single layer at any given time. To modify
multiple layers, use multiple ModifyFeature controls.

Deprecation Warning

As of OpenLayers 2.6, the onModificationStart, onModification and onModificationEnd functions
on this control are no longer the recommended way to receive modification events. Instead, use the
beforefeaturemodified, featuremodified, and afterfeaturemodified events to handle these cases.

MousePosition

NavToolbar

Navigation

The replacement control for the former MouseDefaults control. This control is a combination of:

• DragPan
• ZoomBox
• Handler.Click, for double click zooming
• Handler.Wheel, for wheel zooming

The most common request for the Navigation control is to disable wheel zooming when using the
control. To do this, ensure that no other navigation controls are added to your map – for example,
by an EditingToolbar – and call disableWheelNavigation on the Navigation control.

OpenLayers Documentation (fév. 2010) 13/38

http://docs.openlayers.org/library/controls.html#control-editingtoolbar
http://docs.openlayers.org/library/controls.html#control-zoombox
http://docs.openlayers.org/library/controls.html#control-dragpan
http://docs.openlayers.org/library/controls.html#control-mousedefaults
http://dev.openlayers.org/apidocs/files/OpenLayers/Control/ModifyFeature-js.html
http://openlayers.org/dev/examples/modify-feature.html

NavigationHistory

OverviewMap

PanPanel

A set of visual buttons for controlling the location of the map. A subclass of Control.Panel, this is
easily controlled by styling via CSS. The .olControlPanPanel class, and its internal divs,
control the styling of the PanPanel. If you wish to customize the look and feel of the controls in the
upper left corner of the map, this control is the one for you.

This control is designed to work with the ZoomPanel control to replicate the functionality of the
PanZoom control.

PanZoom

PanZoomBar

Permalink

The Permalink control, together with the ArgParser control, are designed to make it easy to link to
an existing map view. By adding the permalink control to your map, you will make available a
piece of text in the map that acts as a link for your users.

In order for the permalink to work, you must ensure that you check whether the center has already
been set by the ArgParser control before you set the center of your map. To do this, simply check
map.getCenter() first:

if (!map.getCenter()) {
 map.setCenter(new OpenLayers.LonLat(0,0),0);
}

Scale

ScaleLine

SelectFeature

Snapping

Provides an agent to control snapping vertices of features from one layer to nodes, vertices, and
edges of features from any number of layers. The control operates as a toggle - acting as a snapping
agent while active and not altering behavior of editing while not active. The control can be
configured to allow node, vertex, and or edge snapping to any number of layers (given vector layers
with features loaded client side). The tolerance, snapping type, and an optional filter can be
configured for each target layer.

Find more detail on the OpenLayers.Control.Snapping page.

OpenLayers Documentation (fév. 2010) 14/38

http://docs.openlayers.org/library/controls/snapping.html#control-snapping-detail
http://docs.openlayers.org/library/controls.html#control-panzoom
http://docs.openlayers.org/library/controls.html#control-zoompanel

Split

Provides an agent for splitting linear features on a vector layer given edits to linear features on any
other vector layer or a temporary sketch layer. The control operates in two modes. By default, the
control allows for temporary features to be drawn on a sketch layer (managed by the control) that
will be used to split eligible features on the target layer. In auto-split mode, the control listens for
edits (new features or modifications to existing features) on an editable layer and splits eligible
features on a target layer.

The control can be added to a map as with other controls. It has no distinct visual representation but
can be connected to a button or other tool to toggle activation with a click. In addition, no GUI
elements are provided for control configuration. Collecting user input to configure behavior of the
control is an application specific task.

Find more detail on the OpenLayers.Control.Split page.

ZoomBox

ZoomPanel

A set of visual buttons for controlling the zoom of the map. A subclass of Control.Panel, this is
easily controlled by styling via CSS. The .olControlZoomPanel class, and its internal divs,
control the styling of the PanPanel. If you wish to customize the look and feel of the controls in the
upper left corner of the map, this control is the one for you.

This control is designed to work with the PanPanel control to replicate the functionality of the
PanZoom control.

Button Classes
These classes have no UI on their own, and are primarily designed to be used inside of a control
panel.

Pan

Used inside the PanPanel; when triggered, causes the map to pan in a specific direction.

ZoomIn

Used inside the PanPanel; when triggered, causes the map to zoom in.

ZoomOut

Used inside the PanPanel; when triggered, causes the map to zoom out.

ZoomToMaxExtent

Used inside the PanPanel; when triggered, causes the map to zoomToMaxExtent.

Generic Base Classes
The following classes are used primarily for subclassing, and are not meant to be used directly.

OpenLayers Documentation (fév. 2010) 15/38

http://docs.openlayers.org/library/controls.html#control-panzoom
http://docs.openlayers.org/library/controls.html#control-panpanel
http://docs.openlayers.org/library/controls/split.html#control-split-detail

Button

Used inside of Panel controls.

Panel

Used as a base for NavToolbar and EditingToolbar controls, as well as others. Gathers up
buttons/tools to be used together.

Deprecated Controls

MouseDefaults

Replaced by the Navigation control.

MouseToolbar

Replaced by the NavToolbar control.

More documentation
• OpenLayers.Control.Snapping
• OpenLayers.Control.Split

Formats
Formats are classes that parse different sources of data into OpenLayers internal objects. Most (but
not all) formats are centered around reading data from an XML DOM or a string and converting
them to OpenLayers.Feature.Vector objects.

Formats are a way of transforming data from a server to objects that OpenLayers can interact with.

Built In Formats

KML

The KML format reads KML data and returns an array of OpenLayers.Feature.Vector objects.

The KML parser supports parsing local and remote styles.

The KML parser supports fetching network links.

For fetching remoteData, the maxDepth option must be greater than 0. This option tells the KML
parser how far the traverse before giving up.

Note: Prior to OpenLayers 2.8, the maxDepth option was broken. No setting in the KML format
would cause it to fetch network links or remote styles.

Creating Custom Formats
Creating custom formats, particularly for use with OpenLayers Protocols, is relatively easy: simply

OpenLayers Documentation (fév. 2010) 16/38

http://docs.openlayers.org/library/controls/split.html
http://docs.openlayers.org/library/controls/snapping.html
http://docs.openlayers.org/library/controls.html#control-navtoolbar
http://docs.openlayers.org/library/controls.html#control-navigation

create a subclass of Format that has a ‘read’ method which takes in a string, and returns an array of
features.

var MyFormatClass = OpenLayers.Class(OpenLayers.Format.XML, {
 read: function(data) {
 // We're going to read XML
 if(typeof data == "string") {
 data = OpenLayers.Format.XML.prototype.read.apply(this, [data]);
 }
 var elems = data.getElementByTagName("line");
 var features = [];
 var wkt = new OpenLayers.Format.WKT();
 for (var i = 0; i < elems.length; i++) {
 var node = elems[i];
 var wktString = this.concatChildValues(node);
 features.push(wkt.read(wktString));
 }
 return features;
 }
});

This will read an XML document that has a series of ‘line’ XML elements with WKT embedded in
each of them. It can be used with a “‘format: MyFormatClass’ line in a Layer.GML, or a ‘format:
new MyFormatClass()’ in Protocols which support setting a format.

Overlays
OpenLayers allows you to lay many different types of data on top of its various data sources.
Currently, there are two main ways of displaying vector feature overlays in OpenLayers, each with
benefits and drawbacks. This document seeks to describe the differences, and ways in which each
can be used.

Overlay Basics
There are two different types of feature rendering in OpenLayers. One type is the OpenLayers
Vector Overlays support, which uses vector drawing capabilities in the browser (SVG, VML, or
Canvas) to display data. The other type is the OpenLayers Marker Overlays support. This type of
layer displays HTML image objects inside the DOM.

In general, the Vector layer provides more capabilities, with the ability to draw lines, polygons, and
more. The Vector-based Layers are better maintained, and are the place where most new
OpenLayers development is taking place. There is more support for various styling options, and
more configurability over layer behavior and interactions with remote servers.

However, the Markers layer is maintained for backwards compatibility, because there are some
things you can not do with vectors as they are currently implemented, and they provide a different
type of interface for event registration.

Vector Overlays
Vector Layers form the core of Vector overlays. Vector overlays are powered by adding sets of
OpenLayers.Feature.Vectors to the map. These can be a number of types of geometry:

• Point / MultiPoint

OpenLayers Documentation (fév. 2010) 17/38

http://docs.openlayers.org/library/overlays.html#marker-overlays
http://docs.openlayers.org/library/overlays.html#vector-overlays

• Line / MultiLine
• Polygon / MultiPolygon

They are styled using the OpenLayers.Style / OpenLayers.StyleMap properties.

Examples:

• StyleMap Example :

Use “Rules” to determine style attributes based on feature properties. This
is useful for rendering based on data attributes like population.

• Context Example :

Use a custom Javascript function to determine feature style properties.
This example shows how to use which quadrant of the world a feature is in
to determine its color. Similar rules can be used to do computations on a
feature property to generate a style value (like size).

• Rotation Example :

Vector features support advanced styling, like feature rotation. This can be
used, for example, to display vehicle direction, wind direction, or other
direction-based attributes.

• Unique Value Style Example :

A common use case is to pick a specific style value based on a key/value
mapping of a feature. This example demonstrates how to do that.

Interaction

Vector layer interaction is achieved through the SelectFeatureControl. This control allows selection
of features, using DOM events to capture which feature is clicked on.

To handle feature events on a Vector Layer, you use the SelectFeature control, in combination with
an event listener registered on the layer, on the ‘featureselected’ event.

function selected (evt) {
 alert(evt.feature.id + " selected on " + this.name);
}
var layer = new OpenLayes.Layer.Vector("VLayer");
layer.events.register("featureselected", layer, selected);

Once you have done this, you can add a select feature control to your map:

var control = new OpenLayers.Control.SelectFeature(layer);
map.addControl(control);
control.activate();

The activate call will move the vector layer to the forefront of the map, so that all events will occur
on this layer.

As of OpenLayers 2.7, there is no support for selecting features from more than a single vector
layer at a time. The layer which is currently being used for selection is the last one on which the
.activate() method of the attached select feature control was called.

OpenLayers Documentation (fév. 2010) 18/38

http://openlayers.org/dev/examples/styles-unique.html
http://openlayers.org/dev/examples/styles-rotation.html
http://openlayers.org/dev/examples/styles-context.html
http://openlayers.org/dev/examples/stylemap.html

Layer Types

• Vector (Base Class)
• GML – can load many different types of data.
• PointTrack
• WFS

Marker Overlays
Markers support only point geometries. They are styled only using the OpenLayers.Icon class. They
do not support lines, polygons, or other complex features. Their interaction method differs
significantly from vector layers.

In general, Markers are the ‘older’ way to interact with geographic data in the browser. Most new
code should, where possible, use vector layers in place of marker layers.

Interaction

Interaction on marker layers is achieved by registering events on the individual marker event
property:

var marker = new OpenLayers.Marker(lonlat);
marker.id = "1";
marker.events.register("mousedown", marker, function() {
 alert(this.id);
});

Any number of events can be registered, and different events can be registered for each feature.

Layer Types

• Markers (Base Class)
• GeoRSS
• Text
• Boxes (Uses Special “Box” Marker)

Transitioning from Text Layer or GeoRSS Layer to
Vectors

Many OpenLayers-applications make use of the Text Layer or GeoRSS Layer, which each parse a
file (tab separated values) and displays markers an the provided coordinates. When clicking on one
of the markers a popup opens and displays the content of the name and description from that
location.

This behavior is relatively easy to achieve using vector layers, and doing so allows for more
configurability of the behavior when clicking on a feature. Instead of being forced to use popups,
you can instead cause the browser to go to a new URL, or change the behavior in other ways.

Loading Data

To mimic the loading behavior of a Text Layer or a GeoRSS Layer, there are two options:

OpenLayers Documentation (fév. 2010) 19/38

http://docs.openlayers.org/library/layers.html#layer-georss
http://docs.openlayers.org/library/layers.html#layer-text
http://docs.openlayers.org/library/layers.html#layer-georss
http://docs.openlayers.org/library/layers.html#layer-text
http://docs.openlayers.org/library/layers.html#layer-boxes
http://docs.openlayers.org/library/layers.html#layer-text
http://docs.openlayers.org/library/layers.html#layer-georss
http://docs.openlayers.org/library/layers.html#layer-markers
http://docs.openlayers.org/library/layers.html#layer-wfs
http://docs.openlayers.org/library/layers.html#layer-pointtrack
http://docs.openlayers.org/library/layers.html#layer-gml
http://docs.openlayers.org/library/layers.html#layer-vector

• Use a GML Layer – covered in this document.
• Use a Vector Layer, with a strategy and protocol.

In either case, the way for controlling the behavior of the feature selection is the same.

Loading data with a GML Layer

The GML Layer is a simple “Load data from a URL once” data layer. You provide it a URL, and a
format to use, and it will load the data from the URL, and parse it according to the format.

var layer = new OpenLayers.Layer.GML("Layer Name",
 "http://example.com/url/of/data.txt",
 { format: OpenLayers.Format.Text });
map.addLayer(layer);
map.zoomToMaxExtent();

This will cause your data to load, displaying your data as points on the map.

Styling Data

Some data formats do not include styling information, like GeoRSS. In order to match the default
OpenLayers style to the default marker in OpenLayers, you should create a StyleMap that matches
the default OpenLayers style:

var style = new OpenLayers.Style({
 'externalGraphic': OpenLayers.Util.getImagesLocation() + "marker.png",
 'graphicHeight': 25,
 'graphicWidth': 21,
 'graphicXOffset': -10.5,
 'graphicYOffset': -12.5
});

var styleMap = new OpenLayers.StyleMap({'default':style});

var layer = new OpenLayers.Layer.GML("Layer Name",
 "http://example.com/url/of/data.txt",
 {
 format: OpenLayers.Format.GeoRSS,
 styleMap: styleMap
 }
);

Using a style map like this will result in no visible difference when your feature is selected. To
create a different style for selection – for example, with a different marker color – you could craft a
second style object, and instead create your styleMap like:

var styleMap = new OpenLayers.StyleMap({
 'default': style,
 'select': selectStyle
});

For more information on styling your features, see the Styling or StyleMap documentation.

Displaying Popups

The Text Layer and the GeoRSS Layer open popups containing title and description text for the
feature when clicked. Replicating this behavior in your application is easy.

OpenLayers Documentation (fév. 2010) 20/38

http://docs.openlayers.org/library/layers.html#layer-georss
http://docs.openlayers.org/library/layers.html#layer-text
http://docs.openlayers.org/library/feature_styling.html#stylemap
http://docs.openlayers.org/library/feature_styling.html#styling
http://docs.openlayers.org/library/layers.html#layer-gml
http://docs.openlayers.org/library/layers.html#layer-vector
http://docs.openlayers.org/library/layers.html#layer-gml

First, define a set of functions for managing your popup.

function onPopupClose(evt) {
 // 'this' is the popup.
 selectControl.unselect(this.feature);
}
function onFeatureSelect(evt) {
 feature = evt.feature;
 popup = new OpenLayers.Popup.FramedCloud("featurePopup",
 feature.geometry.getBounds().getCenterLonLat(),
 new OpenLayers.Size(100,100),
 "<h2>"+feature.attributes.title + "</h2>" +
 feature.attributes.description,
 null, true, onPopupClose);
 feature.popup = popup;
 popup.feature = feature;
 map.addPopup(popup);
}
function onFeatureUnselect(evt) {
 feature = evt.feature;
 if (feature.popup) {
 popup.feature = null;
 map.removePopup(feature.popup);
 feature.popup.destroy();
 feature.popup = null;
 }
}

Next, we define two event handlers on the layer to call these functions appropriately. We use the
layer definition from above, and assume that the layer has been added to the map.

layer.events.on({
 'featureselected': onFeatureSelect,
 'featureunselected': onFeatureUnselect
});

Combining these two sections of code will cause the map to open a popup any time the feature is
selected, and close the popup when the feature is unselected or the close button is pressed.

The HTML in the fourth argument to the FramedCloud constructor is based on the type of data you
are parsing. This example is based around the Text Layer, but you can do the same with a KML
layer by changing the ‘title’ to ‘name’. The GeoRSS Layer could use the
feature.attributes.link property in addition, to create a link to the feature.

It is worth noting that this content – passed to the FramedPopup constructor – is set using
innerHTML, and as such, is subject to XSS attacks if the content in question is untrusted. If you can
not trust the content in your source files, you should employ some type of stripping to remove
possibly malicious content before setting the popup content to protect your site from XSS attacks.

Once you’ve done this, you can customize the behavior of your layer to your heart’s content.
Change the layout of your popup HTML, change the type of popup, or change the click behavior to
instead open a new window – it’s all possible, and simple, with the functionality provided by the
vector layers and SelectFeatureControl.

Styling
This OpenLayers Styles framework is the way to control the styling of features attached to vector

OpenLayers Documentation (fév. 2010) 21/38

layers in OpenLayers, such as points, lines, and polygons. It provides capabilities which correspond
to the features provided by standards like SLD, allowing the use of advanced feature styling with
properties and rules.

Style Classes
When a feature is added to a map, its style information can come from one of three sources:

• A symbolizer hash set directly on the feature. This is unusual, but may occur when parsing
remote data which embeds style information at the feature level, like some KML content.

• A symbolizer hash attached to a layer as layer.style.
• A Style or StyleMap object attached to the layer as layer.styleMap.

A symbolizer hash is a simple JavaScript object, with key/value pairs describing the values to be
used.

{
 'strokeWidth': 5,
 'strokeColor': '#ff0000'
}

A StyleMap object is a more descriptive element, which allows for the use of advanced feature-
based styling. It uses the OpenLayers.Style and OpenLayers.StyleMap objects. A style map has
support for different ‘render intents’: ways in which a feature should be drawn. OpenLayers uses
three different render intents internally:

• ‘default’: Used in most cases
• ‘select’: Used when a feature is selected
• ‘temporary’: Used while ‘sketching’ a feature.

When a feature is drawn, it is possible to pass one of these renderIntents to the Layer’s
‘drawFeature’ function, or to set the ‘renderIntent’ property of the feature to one of these three
intents.

Each renderIntent in the StyleMap has an OpenLayers Style object associated with it.

OpenLayers Style objects are descriptions of the way that features should be rendered. When a
feature is added to a layer, the layer combines the style property with the feature to create a
‘symbolizer’ – described above as a set of style properties that will be used when rendering the
layer. (Internally, this is done via the createSymbolizer function.)

Attribute Replacement Syntax

The most common way of accessing attributes of the feature when creating a style is through the
attribute replacement syntax. By using style values like ${varname} in your style, OpenLayers
can replace these strings with attributes of your feature. For example, if you had a GeoJSON file
where each feature had a thumbnail property describing an image to use, you might use
something like:

var s = new OpenLayers.Style({
 'pointRadius': 10,
 'externalGraphic': '${thumbnail}'
});

In this way, the style can contain rendering information which is dependant on the feature.

OpenLayers Documentation (fév. 2010) 22/38

StyleMap

Simple OpenLayers Style objects are instantiated by passing a symbolizer hash to the constructor of
the style. This Style can then be passed to a StyleMap constructor:

new OpenLayers.StyleMap(s);

As a convenience, you can also create a StyleMap by passing a symbolizer hash directly. (The
StyleMap will then create the Style object for you.)

new OpenLayers.StyleMap({'pointRadius': 10,
 'externalGraphic': '${thumbnail}'});

In almost all simple cases, this will be sufficient. By default, passing in a Style object will cause all
the render intents of the StyleMap to be set to the same style. If you wish to have different Style
objects for the different render intents, instead pass a hash of Style objects or symbolizer hashes:

var defaultStyle = new OpenLayers.Style({
 'pointRadius': 10,
 'externalGraphic': '${thumbnail}'
});

var selectStyle = new OpenLayers.Style({
 'pointRadius': 20
});

new OpenLayers.StyleMap({'default': defaultStyle,
 'select': selectStyle});

The “default” intent has a special role: if the extendDefault property of the StyleMap is set to true
(default), symbolizers calculated for other render intents will extend the symbolizer calcualated for
the “default” intent. So if we want selected features just to have a different size or color, we only
have to set a single property (in this example: pointRadius).

Using Style Objects
Once you have created a style object, it needs to be passed to a layer in order for it to be used. The
StyleMap object should be passed as the layer’s ‘styleMap’ option:

var styleMap = new OpenLayers.StyleMap({pointRadius: 10,
 externalGraphic: '${thumbnail}'});
var l = new OpenLayers.Layer.Vector("Vector Layer",
 {styleMap: styleMap});

Features added to the layer will then be styled according to the StyleMap.

Rule Based Styling
In addition to simple attribute based styles, OpenLayers also has support for rule-based styling –
where a property on the feature can determine the other styles in use. For example, if you have an
attribute, ‘size’, which is ‘large’ or ‘small’, which determines the desired size of the icon, you can
use that property to control the pointRadius.

OpenLayers provides two different ways to do this. Many simple cases can be solved with the
addUniqueValueRules convenience function, while more complex cases require creating your own
rules.

OpenLayers Documentation (fév. 2010) 23/38

http://docs.openlayers.org/library/feature_styling.html#adduniquevaluerules

addUniqueValueRules

In order to use addUniqueValueRules, you first create a StyleMap with the ‘shared’ properties of
the style. As in the case above, we imagine that we are loading features with URLs in the
‘thumbnail’ attribute:

var styleMap = new OpenLayers.StyleMap({externalGraphic: '${thumbnail}'});

We then create a mapping between feature attribute value and symbolizer value, then add rules to
the default symbolizer that check for the “size” attribute and apply the symbolizer defined in that
variable:

var lookup = {
 "small": {pointRadius: 10},
 "large": {pointRadius: 30}
}

styleMap.addUniqueValueRules("default", "size", lookup);

This adds rules to the Styles in the ‘default’ renderIntent, stating that the Style should change the
pointRadius based on the ‘size’ attribute of the feature.

The symbolizers inside rules do not have to be complete symbolizers, because they extend the
default symbolizer passed with the constructor of OpenLayers.Style or OpenLayers.StyleMap.

The Unique Values example demonstrates the use of addUniqueValueRules.

Custom Rules

OpenLayers supports many types of Rules and Filters. The addUniqueValueRules function creats
Comparison rules, with the EQUAL_TO operator. We can also create rules that allow us to apply
styles based on whether a value is greater than or less than a value, or whether it matches a certain
string, and more.

Here, we demonstrate how to create filters using the LESS_THAN and
GREATER_THAN_OR_EQUAL_TO operators:

var style = new OpenLayers.Style();

var ruleLow = new OpenLayers.Rule({
 filter: new OpenLayers.Filter.Comparison({
 type: OpenLayers.Filter.Comparison.LESS_THAN,
 property: "amount",
 value: 20,
 }),
 symbolizer: {pointRadius: 10, fillColor: "green",
 fillOpacity: 0.5, strokeColor: "black"}
});

var ruleHigh = new OpenLayers.Rule({
 filter: new OpenLayers.Filter.Comparison({
 type: OpenLayers.Filter.Comparison.GREATER_THAN_OR_EQUAL_TO,
 property: "amount",
 value: 20,
 }),
 symbolizer: {pointRadius: 20, fillColor: "red",
 fillOpacity: 0.7, strokeColor: "black"}
});

OpenLayers Documentation (fév. 2010) 24/38

http://www.openlayers.org/dev/examples/styles-unique.html

style.addRules([ruleLow, ruleHigh]);

Each of these rules uses a Comparison filter. There are several types of filters:

• Comparison Filters : Comparison filters take an operator – one of the supported comparison
filter types – and one or two values. It then evaluates whether the feature matches the
comparison.

• FeatureId Filters : Takes a list of Feature IDs, and evaluates to true if the feature’s ID is in
the array.

• Logical Filters : Logical filters combine other types of filters together, which allows building
more complex rules by concatenating them using boolean operators (AND, OR, NOT). A
Logical rule (except NOT) can have child rules.

Every rule can also have a minScaleDenominator and a maxScaleDenominator property. This
allows us to specify scale ranges for which the rule should apply. We might e.g. want to show small
points at small scales, but image thumbnails at large scales. The result of such rules can be seen in
the SLD example: Zooming in one level will turn two lakes into blue. The styles and rules from this
example do not come from JavaScript-created style and rule objects, but from a SLD document read
in by OpenLayers.Format.SLD.

With SLD, styles are grouped into named layers (NamedLayer), which again have a set of named
user styles (UserStyle). This is the reason why the Style object also has layerName and name
properties. For each named layer, there can be a default style. This is marked by setting the
isDefault property of the Style object to true.

Style Properties
The properties that you can use for styling are:

• fillColor

Default is #ee9900. This is the color used for filling in Polygons. It is also used in
the center of marks for points: the interior color of circles or other shapes. It is not
used if an externalGraphic is applied to a point.

• fillOpacity:

Default is 0.4. This is the opacity used for filling in Polygons. It is also used in the
center of marks for points: the interior color of circles or other shapes. It is not used if
an externalGraphic is applied to a point.

• strokeColor

Default is #ee9900. This is color of the line on features. On polygons and point
marks, it is used as an outline to the feature. On lines, this is the representation of the
feature.

• strokeOpacity

Default is 1 This is opacity of the line on features. On polygons and point marks, it is
used as an outline to the feature. On lines, this is the representation of the feature.

• strokeWidth

OpenLayers Documentation (fév. 2010) 25/38

http://dev.openlayers.org/docs/files/OpenLayers/Format/SLD-js.html
http://openlayers.org/dev/examples/sld.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Filter/Logical-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Filter/FeatureId-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Filter/Comparison-js.html#OpenLayers.Filter.Comparison.type
http://dev.openlayers.org/apidocs/files/OpenLayers/Filter/Comparison-js.html#OpenLayers.Filter.Comparison.type
http://dev.openlayers.org/apidocs/files/OpenLayers/Filter/Comparison-js.html

Default is 1 This is width of the line on features. On polygons and point marks, it is
used as an outline to the feature. On lines, this is the representation of the feature.

• strokeLinecap

Default is round. Options are butt, round, square. This property is similar to
the SVG stroke-linecap property. It determines what the end of lines should look like.
See the SVG link for image examples.

• strokeDashstyle

Default is solid. Options are:

• dot
• dash
• dashdot
• longdash
• longdashdot
• solid

• pointRadius

Default is 6.

• pointerEvents:

Default is visiblePainted. Only used by the SVG Renderer. See SVG pointer-
events definition for more.

• cursor

Cursor used when mouse is over the feature. Default is an empty string, which inherits
from parent elements.

• externalGraphic

An external image to be used to represent a point.

• graphicWidth, graphicHeight

These properties define the height and width of an externalGraphic. This is an
alternative to the pointRadius symbolizer property to be used when your graphic has
different sizes in the X and Y direction.

• graphicOpacity

Opacity of an external graphic.

• graphicXOffset, graphicYOffset

Where the ‘center’ of an externalGraphic should be.

• rotation

The rotation angle in degrees clockwise for a point symbolizer.

OpenLayers Documentation (fév. 2010) 26/38

http://www.w3.org/TR/SVG11/interact.html#PointerEventsProperty
http://www.w3.org/TR/SVG11/interact.html#PointerEventsProperty

• graphicName

Name of a type of symbol to be used for a point mark.

• display

Can be set to ‘none’ to hide features from rendering.

Deploying
OpenLayers comes with pre-configured examples out of the box: simply download a release of
OpenLayers, and you get a full set of easy to use examples. However, these examples are designed
to be used for development. When you’re ready to deploy your application, you want a highly
optimized OpenLayers distribution, to limit bandwidth and loading time.

Single File Build
OpenLayers has two different types of usage: Single File, where all Javascript code is compiled into
a single file, OpenLayers.js, and the development version, where Javascript files are all loaded at
application start time. The single file build takes a set of OpenLayers Javascript files, orders them
according to dependancies described in the files, and compresses the resulting file, using the jsmin
compression library.

Building a single file version of the OpenLayers library changes the behavior of the library slightly:
by default, the development version of OpenLayers expects to live in a directory called “lib”, and
expects that images and CSS live in the directory above the OpenLayers.js file:

img/pan-hand.png
theme/default/style.css
lib/OpenLayers.js
lib/OpenLayers/Map.js
...

However, when deploying a single file build of OpenLayers, it is expected that the library will
instead be at the same level as the theme and img directories:

OpenLayers.js
theme/default/style.css
img/pan-hand.png
...

Building the Single File Build

The single file build tools are deployed with an OpenLayers release in the ‘build’ directory. The
tools require Python in order to build.

On Linux and other similar operating systems, given that OpenLayers is stored in the ‘openlayers’
directory, a single file build could be created by issuing the following commands:

cd openlayers/build
./build.py

This would create a file in the build directory called “OpenLayers.js”, which contains all the library
code for your single file build of OpenLayers.

OpenLayers Documentation (fév. 2010) 27/38

In Windows, from the Start Menu, select Run. Copy the path to build.py from the address bar of the
Explorer Window into the text box and then add the name of the configuration file (or blank for the
default):

C:DownloadsOpenLayers-2.6buildbuild.py lite

Custom Build Profiles
In order to optimize the end-user’s experience, the OpenLayers distribution includes tools which
allow you to build your own single file version of the code. This code uses a configuration file to
choose which files should be included in the build: In this way, for production use, you can remove
classes from your OpenLayers JavaScript library file which are not used in your application.

OpenLayers ships with two standard configurations to create a single file version:

full:

This is the full build with all files.

lite:

This file includes a small subset of OpenLayers code, designed to be integrated
into another application. It includes only the Layer types neccesary to create tiled
or untiled WMS, and does not include any Controls. This is the result of what was
at the time called “Webmap.js” at the FOSS4G 2006 Web Mapping BOF.

Profiles are simple to create. You can start by copying library.cfg or lite.cfg to something else, e.g.
myversion.cfg in the build directory.

The start of any build profile must include the same [first] section used in the lite.cfg file:

[first]
OpenLayers/SingleFile.js
OpenLayers.js
OpenLayers/BaseTypes.js
OpenLayers/BaseTypes/Class.js
OpenLayers/Util.js

These files are required for the OpenLayers build to function.

Once you have included these files, you should add more files to the ‘[include]’ section of the file.
The files listed here should be the list of files containing any class you use in your application. You
can typically find these classes by looking through your code for any cases where ‘new
OpenLayers.ClassName()’ is used.

Taking the ‘lite.html’ example, we see that there are two ‘new’ statements in the file: one for the
OpenLayers.Map class, and one for the OpenLayers.Layer.WMS class. We then add the
corresponding files to our include section:

[include]
OpenLayers/Map.js
OpenLayers/Layer/WMS.js

Once we have done that, we can build our profile by adding the profile name to the end of our ealier
build command:

OpenLayers Documentation (fév. 2010) 28/38

./build.py myversion

This will create a much smaller OpenLayers version, suitable for limited applications.

Almost all applications can benefit from a custom build profile. OpenLayers supports many
different layer types, but most applications will only use one or two, and many applications do not
need the full support of many of the features in OpenLayers. In order to limit your download time
and library size, building a custom profile is highly recommended before deploying an OpenLayers
application: it can help shrink the size of your library by a factor of five over using the full library.

Deploying Files
In order to deploy OpenLayers, there are several different pieces that must be deployed.

OpenLayers.js

The library. This provides the JavaScript code for your application to use.

theme directory

The theme directory contains CSS and image files for newer controls, whose
styling and positioning is controlled entirely by CSS.

img directory

This directory provides images to be used for some controls, like the PanZoom
control, which do not use CSS for styling.

As described above, when deploying these files with a single file OpenLayers build, they should all
live in the same directory: this allows OpenLayers to properly find and include them.

Requesting Remote Data
There are a number of ways to get data from the server to the client. Setting image, script, and
stylesheet sources can be done at any time to request new data without refreshing an entire
document. These types of requests can be made to any origin. Another way to retrieve data from a
server is to update the location of a document in a frame (iframe or otherwise). These types of
requests can also be made to any origin. However, the code running in the original document is
restricted to reading data in documents that come from the same origin. This means if your
application is served from http://example.com, your code may load a document in a frame from any
other origin (say http://example.net), but your code can only access data in that document if it was
served via the same protocol (http), from the same domain (example.com), and on the same port
(likely 80 in this case).

The above types of request are useful because they are asynchonous. That is, the user can continue
to view and interact with the original page while additional data is being requested. A more
common way to request data asynchronously is to use the XMLHttpRequst object. With an
XMLHttpRequest object, you can open a conection to a server and send or receive data via HTTP
(or HTTPS). XMLHttpRequest objects are a bit awkward to use and are unfortunately not supported
in all browsers. OpenLayers provides a cross-browser XMLHttpRequest function and wraps it in
some convenient OpenLayers.Request methods.

OpenLayers Documentation (fév. 2010) 29/38

http://code.google.com/p/xmlhttprequest/
http://www.w3.org/TR/XMLHttpRequest/
http://example.net/
http://example.com/

In general, all communication initiated by OpenLayers.Request methods is restricted to the
same origin policy: requests may only be issued with the same protocol, to the same domain, and
through the same port as the document the code is running from. The OpenLayers.Request
methods allow you to access data asynchronously or synchronously (synchronous requests will lock
the UI while the request is pending).

Note

Though you may read about cross-domain Ajax, unless a user has specifically configured their
browser’s security settings, the same origin policy will apply to requests with XMLHttpRequest.
The “cross-domain” functionality is typically achieved by either setting up a proxy (on the same
origin) that passes on all communication to a remote server or by requesting data without the
XMLHttpRequest object (in a script tag for example). One nuance of the same origin policy is that
code running on a page from one domain may set the document.domain property to a suffix of
the original domain. This means that code running on a document from sub.example.com may
request data from example.com by setting document.domain to example.com. A document
from example.com, however, cannot prefix the domain property to request data from a sub domain.

The OpenLayers.Request methods correspond to the common HTTP verbs: GET, POST,
PUT, DELETE, HEAD, and OPTIONS. See the Request API documentation for a description of
each of these methods. The short examples below demonstrate the use of these methods under a
variety of conditions.

Example usage
1. Issue a GET request and deal with the response.

function handler(request) {
 // if the response was XML, try the parsed doc
 alert(request.responseXML);
 // otherwise, you've got the response text
 alert(request.responseText);
 // and don't forget you've got status codes
 alert(request.status);
 // and of course you can get headers
 alert(request.getAllResponseHeaders());
 // etc.
}

var request = OpenLayers.Request.GET({
 url: "http://host/path",
 callback: handler
});

2. Issue a GET request with a query string based on key:value pairs.

function handler(request) {
 // do something with the response
 alert(request.responseXML);
}

var request = OpenLayers.Request.GET({
 url: "http://host/path",
 params: {somekey: "some value & this will be encoded properly"},
 callback: handler
});

OpenLayers Documentation (fév. 2010) 30/38

http://dev.openlayers.org/apidocs/files/OpenLayers/Request-js.html

3. Issue a GET request where the handler is a public method on some object.

// assuming obj was constructed earlier
obj.handler = function(request) {
 this.doSomething(request);
}

var request = OpenLayers.Request.GET({
 url: "http://host/path",
 callback: obj.handler,
 scope: obj
});

4. Issue a synchronous GET request.

var request = OpenLayers.Request.GET({
 url: "http://host/path",
 async: false
});
// do something with the response
alert(request.responseXML);

5. Issue a POST request with some data.

// assuming you already know how to create your handler
var request = OpenLayers.Request.POST({
 url: "http://host/path",
 data: "my data to post",
 callback: handler
});

6. Issue a POST request with a custom content type (application/xml is default).

// again assuming you have a handler
var request = OpenLayers.Request.POST({
 url: "http://host/path",
 data: "this is text not xml!",
 headers: {
 "Content-Type": "text/plain"
 },
 callback: handler
});

7. Issue a POST request with form-encoded data.

var request = OpenLayers.Request.POST({
 url: "http://host/path",
 data: OpenLayers.Util.getParameterString({foo: "bar"}),
 headers: {
 "Content-Type": "application/x-www-form-urlencoded"
 },
 callback: handler
})

8. Issue a GET request and then abort it.

var request = OpenLayers.Request.GET(); // dumb, but possible
request.abort();

9. Deal with the many ways that a request can “fail.”

OpenLayers Documentation (fév. 2010) 31/38

function handler(request) {
 // the server could report an error
 if(request.status == 500) {
 // do something to calm the user
 }
 // the server could say you sent too much stuff
 if(request.status == 413) {
 // tell the user to trim their request a bit
 }
 // the browser's parser may have failed
 if(!request.responseXML) {
 // get ready for parsing by hand
 }
 // etc.
}
// issue a request as above

10.Issue DELETE, PUT, HEAD, and OPTIONS requests.

// handlers defined elsewhere

var deleteRequest = OpenLayers.Request.DELETE({
 url: "http://host/path",
 callback: deleteHandler
});

var putRequest = OpenLayers.Request.PUT({
 url: "http://host/path",
 callback: putHandler
});

var headRequest = OpenLayers.Request.HEAD({
 url: "http://host/path",
 callback: headHandler
});

var optionsRequest = OpenLayers.Request.OPTIONS({
 url: "http://host/path",
 callback: optionsHandler
});

11.(Rare) Issue a GET request using a proxy other than the one specified in
OpenLayers.ProxyHost (same origin policy applies).

// handler defined elsewhere
var request == OpenLayers.Request.GET({
 url: "http://host/path",
 params: {somekey: "some value"},
 proxy: "http://sameorigin/proxy?url=" // defaults to OpenLayers.ProxyHost
});

Spherical Mercator
This document describes the Spherical Mercator projection, what it is, and when you should use it.
It includes some background information, demonstration of using the code with just a commercial
layer, and how to add a WMS over the top of that layer, and how to reproject coordinates within
OpenLayers so that you can reproject coordinates inside of OpenLayers. It is expected that readers

OpenLayers Documentation (fév. 2010) 32/38

of this tutorial will have a basic understanding of reprojection and a basic understanding of
OpenLayers.

What is Spherical Mercator?
Spherical Mercator is a de facto term used inside the OpenLayers community – and also the other
existing Open Source GIS community – to describe the projection used by Google Maps, Microsoft
Virtual Earth, Yahoo Maps, and other commercial API providers.

This term is used to refer to the fact that these providers use a Mercator projection which treats the
earth as a sphere, rather than a projection which treats the earth as an ellipsoid. This affects
calculations done based on treating the map as a flat plane, and is therefore important to be aware of
when working with these map providers.

In order to properly overlay data on top of the maps provided by the commerical API providers, it is
neccesary to use this projection. This applies primarily to displaying raster tiles over the
commercial API layers – such as TMS, WMS, or other similar tiles.

In order to work well with the existing commercial APIs, many users who create data designed for
use within Google Maps will also use this projection. One prime example is OpenStreetMap, whose
raster map tiles are all projected into the ‘spherical mercator’ projection.

Projections in GIS are commonly referred to by their “EPSG” codes, identifiers managed by the
European Petroleum Survey Group. One common identifier is “EPSG:4326”, which describes maps
where latitude and longitude are treated as X/Y values. Spherical Mercator has an official
designation of EPSG:3785. However, before this was established, a large amount of software used
the identifier EPSG:900913. This is an unofficial code, but is still the commonly used code in
OpenLayers. Any time you see the string “EPSG:4326”, you can assume it describes
latitude/longitude coordinates. Any time you see the string “EPSG:900913”, it will be describing
coordinates in meters in x/y.

First Map
The first thing to do with the Spherical Mercator projection is to create a map using the projection.
This map will be based on the Microsoft Virtual Earth API. The following HTML template will be
used for the map.

<html>
<head>
 <title>OpenLayers Example</title>
 <script src='http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?
v=6.1'></script>
 <script src="http://openlayers.org/api/OpenLayers.js"></script>
 </head>
 <body>
 <div style="width:100%; height:100%" id="map"></div>
 <script defer='defer' type='text/javascript'>
 // Code goes here
 </script>
 </body>
</html>

Ex. 1: HTML Template

The next step is to add the default Microsoft Virtual Earth layer as a base layer to the map.

OpenLayers Documentation (fév. 2010) 33/38

var map = new OpenLayers.Map('map');
var layer = new OpenLayers.Layer.VirtualEarth("Virtual Earth",
 {
 sphericalMercator: true,
 maxExtent: new OpenLayers.Bounds(-20037508.34,-
20037508.34,20037508.34,20037508.34)
 });
map.addLayer(layer);
map.zoomToMaxExtent();

This creates a map. However, once you have this map, there is something very important to be
aware of: the coordinates that you use in setCenter are not longitude and latitude! Instead, they are
in projected units – meters, in this case. This map will let you drag around, but without
understanding a bit more about spherical mercator, it will be difficult to do anything more with it.

This map has a set of assumptions about the maxResolution of the map. Specifically, most spherical
mercator maps use an extent of the world from -180 to 180 longitude, and from -85.0511 to 85.0511
latitude. Because the mercator projection stretches to infinity as you approach the poles, a cutoff in
the north-south direction is required, and this particular cutoff results in a perfect square of
projected meters. As you can see from the maxExtent parameter sent in the constructor of the layer,
the coordinates stretch from -20037508.34 to 20037508.34 in each direction.

The maxResolution of the map defaults to fitting this extent into 256 pixels, resulting in a
maxResolution of 156543.0339. This is handled internally by the layer, and does not need to be set
in the layer options.

If you are using a standalone WMS or TMS layer with spherical mercator, you will need to specify
the maxResolution property of the layer, in addition to defining the maxExtent as demonstrated
here.

Working with Projected Coordinates
Thankfully, OpenLayers now provides tools to help you reproject your data on the client side. This
makes it possible to transform coordinates from Longitude/Latitude to Spherical Mercator as part of
your normal operation. First, we will transform coordinates for use within the setCenter and other
calls. Then we will show how to use the displayProjection option on the map to modify the display
of coordinate data to take into account the projection of the base map.

Reprojecting Points, Bounds

To do this, first create a projection object for your default projection. The standard
latitude/longitude projection string is “EPSG:4326” – this is latitude/longitude based on the WGS84
datum. (If your data lines up correctly on Google Maps, this is what you have.)

You will then be creating an object to hold your coordinates, and transforming it.

var proj = new OpenLayers.Projection("EPSG:4326");
var point = new OpenLayers.LonLat(-71, 42);
point.transform(proj, map.getProjectionObject());

The point is now projected into the spherical mercator projection, and you can pass it to the
setCenter method on the map:

map.setCenter(point);

OpenLayers Documentation (fév. 2010) 34/38

This can also be done directly in the setCenter call:

var proj = new OpenLayers.Projection("EPSG:4326");
var point = new OpenLayers.LonLat(-71, 42);
map.setCenter(point.transform(proj, map.getProjectionObject()));

In this way, you can use latitude/longitude coordinates to choosing a center for your map.

You can use the same technique for reprojecting OpenLayers.Bounds objects: simply call the
transfrom method on your Bounds object.

var bounds = new OpenLayers.Bounds(-74.047185, 40.679648, -73.907005, 40.882078)
bounds.transform(proj, map.getProjectionObject());

Transformations take place on the existing object, so there is no need to assign a new variable.

Reprojecting Geometries

Geometry objects have the same transform method as LonLat and Bounds objects. This means that
any geometry object you create in your application code must be transformed by calling the
transform method on it before you add it to a layer, and any geometry objects that you take from a
layer and wish to use will need to be transformed before further use.

Because all transforms are in place, once you have added a geometry to a layer, you should not call
transform on the geometry directly: instead, you should transform a clone of the geometry:

var feature = vector_layer.features[0];
var geometry = feature.geometry.clone();
geometry.transform(layerProj, targetProj);

Reprojecting Vector Data
When creating projected maps, it is possible to reproject vector data onto a basemap. To do so, you
must simply set the projection of your vector data correctly, and ensure that your map projection is
correct.

var map = new OpenLayers.Map("map", {
 projection: new OpenLayers.Projection("EPSG:900913")
});
var myBaseLayer = new OpenLayers.Layer.Google("Google",
 {'sphericalMercator': true,
 'maxExtent': new OpenLayers.Bounds(-20037508.34,-
20037508.34,20037508.34,20037508.34)
 });
map.addLayer(myBaseLayer);
var myGML = new OpenLayers.Layer.GML("GML", "mygml.gml", {
 projection: new OpenLayers.Projection("EPSG:4326")
});
map.addLayer(myGML);

Note that you can also use this setup to load any format of vector data which OpenLayers supports,
including WKT, GeoJSON, KML and others. Simply specify the format option of the GML layer.

var geojson = new OpenLayers.Layer.GML("GeoJSON", "geo.json", {
 projection: new OpenLayers.Projection("EPSG:4326"),
 format: OpenLayers.Format.GeoJSON
});

OpenLayers Documentation (fév. 2010) 35/38

map.addLayer(geojson);

Note that even if you set the projection object on a layer, if you are adding features to the layer
manually (via layer.addFeatures), they must be transformed before adding to the layer. OpenLayers
will only transform the projection of geometries that are created internally to the library, to prevent
duplicating projection work.

Serializing Projected Data
The way to serialize vector data in OpenLayers is to take a collection of data from a vector layer
and pass it to a Format class to write out data. However, in the case of a projected map, the data that
you get from this will be projected. To reproject the data when converting, you should pass the
internal and external projection to the format class, then use that format to write out your data.

var format = new OpenLayers.Format.GeoJSON({
 'internalProjection': new OpenLayers.Projection("EPSG:900913"),
 'externalProjection': new OpenLayers.Projection("EPSG:4326")
});
var jsonstring = format.write(vector_layer.features);

Display Projection on Controls

Several controls display map coordinates to the user, either directly or built into their links. The
MousePosition and Permalink control (and its companion control, ArgParser) both use coordinates
which match the internal projection of the map – which in the case of Spherical Mercator layers is
projected. To prevent user confusion, OpenLayers allows one to set a ‘display’ projection. When
these controls are used, transformation is made from the map projection to the display projection.

To use this option, when creating your map, you should specify the projection and
displayProjection options. Once this is done, the controls will automatically pick up this option
from the map.

var map = new OpenLayers.Map("map", {
 projection: new OpenLayers.Projection("EPSG:900913"),
 displayProjection: new OpenLayers.Projection("EPSG:4326")
});
map.addControl(new OpenLayers.Control.Permalink());
map.addControl(new OpenLayers.Control.MousePosition());

You can then add your layer as normal.

Creating Spherical Mercator Raster Images
One of the reasons that the Spherical Mercator projection is so important is that it is the only
projection which will allow for overlaying image data on top of commercial layers like Google
Maps correctly. When using raster images, in the browser, it is not possible to reproject the images
in the same way it might be in a ‘thick’ GIS client. Instead, all images must be in the same
projection.

How to create Spherical Mercator projected tiles depends on the software you are using to generate
your images. MapServer is covered in this document.

OpenLayers Documentation (fév. 2010) 36/38

MapServer

MapServer uses proj.4 for its reprojection support. In order to enable reprojection to Spherical
Mercator in MapServer, you must add the definition for the projection to your proj.4 data
directories.

On Linux systems, edit the /usr/share/proj/epsg file. At the bottom of that file, add the line:

<900913> +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0
+k=1.0 +units=m +nadgrids=@null +no_defs

After you do this, you must add the projection to your wms_srs metdadata in your map file:

map
 web
 metadata
 wms_srs "EPSG:4326 EPSG:900913"
 end
 end
 # Layers go here
end

This will allow you to request tiles from your MapServer WMS server in the Spherical Mercator
projection, which will align with commercial provider data in OpenLayers.

var options = {
 projection: new OpenLayers.Projection("EPSG:900913"),
 units: "m",
 maxResolution: 156543.0339,
 maxExtent: new OpenLayers.Bounds(-20037508.34, -20037508.34,
 20037508.34, 20037508.34)
};

map = new OpenLayers.Map('map', options);

// create Google Mercator layers
var gmap = new OpenLayers.Layer.Google(
 "Google Streets",
 {'sphericalMercator': true,
 'maxExtent': new OpenLayers.Bounds(-20037508.34,-
20037508.34,20037508.34,20037508.34)
 }
);

// create WMS layer
var wms = new OpenLayers.Layer.WMS(
 "World Map",
 "http://labs.metacarta.com/wms/vmap0",
 {'layers': 'basic', 'transparent': true}
);

map.addLayers(gmap, wms);

WMS layers automatically inherit the projection from the base layer of a map, so there is no need to
set the projection option on the layer.

GeoServer

Current versions of GeoServer have support for EPSG:900913 built in, so there is no need to add

OpenLayers Documentation (fév. 2010) 37/38

additional projection data. Simply add your GeoServer layer as a WMS and add it to the map.

Custom Tiles

Another common use case for spherical mercator maps is to load custom tiles. Many custom tile
sets are created using the same projection as Google Maps, usually with the same z/x/y scheme for
accessing tiles.

If you have tiles which are set up according to the ‘Google’ tile schema – that is, based on x,y,z and
starting in the upper left corner of the world – you can load these tiles with the TMS layer with a
slightly modified get_url function. (Note that in the past there was a ‘LikeGoogle’ layer in SVN –
this is the appropriate replacement for that code/functionality.)

First, define a getURL function that you want to use: it should accept a bounds as an argument, and
will look something like this:

function get_my_url (bounds) {
 var res = this.map.getResolution();
 var x = Math.round ((bounds.left - this.maxExtent.left) / (res *
this.tileSize.w));
 var y = Math.round ((this.maxExtent.top - bounds.top) / (res *
this.tileSize.h));
 var z = this.map.getZoom();

 var path = z + "/" + x + "/" + y + "." + this.type;
 var url = this.url;
 if (url instanceof Array) {
 url = this.selectUrl(path, url);
 }
 return url + path;

}

Then, when creating your TMS layer, you pass in an option to tell the layer what your custom tile
loading function is:

new OpenLayers.Layer.TMS("Name",
 "http://example.com/",
 { 'type':'png', 'getURL':get_my_url });

This will cause the getURL function to be overridden by your function, thus requesting your
inverted google-like tiles instead of standard TMS tiles.

When doing this, your map options should contain the maxExtent and maxResolution that are used
with Google Maps:

new OpenLayers.Map("map", {
 maxExtent: new OpenLayers.Bounds(-20037508.34,-
20037508.34,20037508.34,20037508.34),
 numZoomLevels:18,
 maxResolution:156543.0339,
 units:'m',
 projection: "EPSG:900913",
 displayProjection: new OpenLayers.Projection("EPSG:4326")
});

As describe above, when using this layer, you will interact with the map in projected coordinates.

OpenLayers Documentation (fév. 2010) 38/38

